11-4 Irrational Square Roots

Objective: To simplify radicals and to find decimal approximations of irrational

square roots.

Vocabulary

Irrational numbers Real numbers that can't be expressed in the form $\frac{a}{b}$,

where a and b are integers. Their exact values can't be expressed as either terminating or repeating decimals.

Property

Property of Completeness Every decimal represents a real number, and every real number can be represented by a decimal.

Example 1

Simplify:

a. $\sqrt{256}$

b. $\sqrt{50}$

c. $2\sqrt{80}$

d. $\sqrt{704}$

Solution

a. $\sqrt{256} = \sqrt{4 \cdot 64}$

Factor within the radical sign.

 $= \sqrt{4} \cdot \sqrt{64}$

Use the product property of square roots.

 $= 2 \cdot 8$

Simplify.

= 16

b. $\sqrt{50} = \sqrt{25 \cdot 2}$

 $=\sqrt{25}\cdot\sqrt{2}$

 $= 5\sqrt{2}$

 $\mathbf{c.} \ 2\sqrt{80} = 2\sqrt{16 \cdot 5}$

 $= 2 \cdot 4\sqrt{5}$

 $= 8\sqrt{5}$

 $\mathbf{d.}\sqrt{704} = \sqrt{64 \cdot 11}$

 $= 8\sqrt{11}$

Simplify.

1. $\sqrt{27}$

2. $\sqrt{20}$

3. $\sqrt{72}$

4. $\sqrt{32}$

5. $\sqrt{48}$

6. $\sqrt{45}$

7. $\sqrt{196}$

8. $\sqrt{80}$

9. $2\sqrt{63}$

10. $4\sqrt{98}$

11. $7\sqrt{28}$

12. $4\sqrt{40}$

13. $\sqrt{441}$

14. $\sqrt{289}$

15. $3\sqrt{50}$

16. $12\sqrt{50}$

17. $\sqrt{729}$

18. $\sqrt{432}$

19. $8\sqrt{75}$

20. $2\sqrt{90}$

21. $\sqrt{147}$

22. $\sqrt{288}$

23. $\sqrt{4225}$

24. $5\sqrt{800}$

25. $5\sqrt{1025}$

11-5 Square Roots of Variable Expressions

To find square roots of variable expressions and to use them to solve equations and problems.

Property

Property of Square Roots of Equal Numbers For any real numbers r and s: $r^2 = s^2$ if and only if r = s or r = -s.

CAUTION

When you are finding the principal square root of a variable expression, you must be careful to use absolute value signs when needed to ensure that your answer is positive. For example, $\sqrt{x^2} = |x|$, not x.

Example 1

Simplify: **a.**
$$\sqrt{144x^2}$$
 b. $\sqrt{25n^8}$ **c.** $\sqrt{12a^3}$

b.
$$\sqrt{25n^8}$$

c.
$$\sqrt{12a^3}$$

Solution

a.
$$\sqrt{144x^2} = \sqrt{144} \cdot \sqrt{x^2}$$

= $12|x|$

b.
$$\sqrt{25n^8} = \sqrt{25} \cdot \sqrt{n^8}$$

= $\sqrt{25} \cdot \sqrt{(n^4)^2}$

=
$$5n^4$$
 (n^4 is always nonnegative)

c.
$$\sqrt{12a^3} = \sqrt{4 \cdot 3 \cdot a^2 \cdot a}$$
$$= \sqrt{4} \cdot \sqrt{a^2} \cdot \sqrt{3} \cdot \sqrt{a}$$
$$= 2|a|\sqrt{3a}$$

Simplify.

1.
$$\sqrt{81x^2}$$

2.
$$\sqrt{121x^2}$$

3.
$$\sqrt{20x^2}$$

4.
$$\sqrt{45x^4}$$

5.
$$-\sqrt{25x^2}$$

6.
$$-\sqrt{16c^4}$$

7.
$$-\sqrt{64d^8}$$

8.
$$-\sqrt{98n^6}$$

9.
$$\sqrt{225y^4}$$

10.
$$\sqrt{400a^6b^4}$$

11.
$$\sqrt{81m^{12}}$$

12.
$$\sqrt{441n^6}$$

13.
$$\pm \sqrt{75x^2y^3}$$

14.
$$\pm \sqrt{60x^6y^4}$$

15.
$$-\sqrt{121x^2y^2}$$

16.
$$-\sqrt{900a^4b^6}$$

17.
$$\pm \sqrt{\frac{81x^8}{100}}$$

18.
$$\pm\sqrt{\frac{121}{225x^{10}}}$$

19.
$$\sqrt{\frac{x^4y^8}{9z^2}}$$

20.
$$\sqrt{\frac{32m^3n^2}{2mn^2}}$$

21.
$$\sqrt{\frac{16x^{18}}{3600y^{20}}}$$

22.
$$\sqrt{\frac{256x^{40}}{25}}$$

23.
$$\sqrt{2.25x^4}$$

24.
$$-\sqrt{2.56k^2}$$